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Abstract

Clustered ILP processors are characterized by a large number of non-centralized on-chip re-
sources grouped into clusters. Traditional code generation schemes for these processors consist
of multiple phases for cluster assignment, register allocation and instruction scheduling. Most of
these approaches need additional re-scheduling phases because they often do not impose finite
resource constraints in all phases of code generation. These phase-ordered solutions have several
drawbacks, resulting in the generation of poor performance code. Moreover, the iterative/back-
tracking algorithms used in some of these schemes have large running times. In this report
we present CARS, a code generation framework for Clustered ILP processors, which combines
the cluster assignment, register allocation, and instruction scheduling phases into a single code
generation phase, thereby eliminating the problems associated with phase-ordered solutions.
The cARs algorithm explicitly takes into account all the resource constraints at each cluster
scheduling step to reduce spilling and to avoid iterative re-scheduling steps. We also present a
new on-the-fly register allocation scheme developed for CARS. We describe an implementation
of the proposed code generation framework and the results of a performance evaluation study

using the SPEC95/2000 and MediaBench benchmarks.

Keywords: Code generation, Clustered ILP processors, Cluster scheduling, Register allocation,

VLIW, Instruction-level parallelism.



1 Introduction

There is a recent interest in statically [1, 2, 3, 4, 5] and dynamically [6, 7, 8, 9] scheduled Clustered
ILP processor microarchitectures as a complexity-effective alternative to wide issue monolithic
microprocessors for effectively utilizing a large number of on-chip resources with minimal impact
on the cycle time. The function units are partitioned and resources such as register file and cache are
either partitioned or replicated and then grouped together into on-chip clusters in these processors.
All the local register files share the same name space in the replicated register file scheme, whereas
in the partitioned register file scheme each one of the local register files has a unique name space.
The clusters are usually connected via a set of inter-cluster communication buses or a point-to-point
network [10].

Several resources are required to execute an operation (OP) in a clustered processor. As in
a single-cluster processor, the OPs need local resources in the cluster such as function units for
execution and registers/memory to save the results. In addition to this, the OPs often need shared
resources such as the inter-cluster communication mechanism to access those operands that reside
in remote clusters. Some form of copy operation (using either hardware techniques [8] or inter-
cluster copy OPs) needs to be explicitly scheduled to access a remote register file in the case of
a partitioned register file scheme, or to maintain coherency in the case of a replicated register
file scheme. Clearly, a good code generation scheme is very crucial to the performance of these
processors in general and especially for statically scheduled clustered ILP processors in which each
one of these local and shared resources has to be explicitly reserved by the code generator on a
cycle-by-cycle basis.

The basic functions! that must be carried out the by the code generator for a clustered ILP
processor are: 1) cluster assignment, 2) instruction scheduling, and 3) register allocation. All
of the three functions are closely inter-related to each other. If these functions are performed
one after another, often their ordering can have a significant impact on the performance of the
generated code. For example, register allocation can affect cluster assignment and vice versa. This
is because the register access delays (due to inter-cluster copy OPs) of an OP are dependent on
the proximity of the cluster in which the operand register is defined to the cluster that tries to
access it. The ordering of cluster assignment and instruction scheduling steps can also affect the
performance of the compiled code. If scheduling is done before cluster assignment, it may not
be possible to incorporate inter-cluster copy OPs in the schedule made by the earlier scheduling
step, often necessitating a re-scheduling step after the cluster assignment. Cluster assignment of
an OP depends on the ready times of its operands and the availability of resources, which in turn
depend on the cycle in which the OPs that define the operands are scheduled. Therefore, cluster
assignment, if carried out before the scheduling step can often result in poor resource utilization
and longer schedule lengths. There are several problems with the approaches using separate phases
for register allocation and instruction scheduling [11, 12]. Global register assignment, if carried

out first, can create unnecessary dependences due to re-definition of registers, thereby restricting

We assume that operation selection has been already made.
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the opportunities for extracting ILP by instruction scheduler. Instruction scheduling if performed
before register assignment can result in inefficient use of registers, thereby increasing the register
pressure, possibly causing unnecessary spills.

In general, phase-ordered solutions at each phase make a “best effort” attempt to get a feasible
cluster schedule, often making unrealistic assumptions such as infinite resources (registers, function
units, etc) or zero time copy operations resulting in poor performance code. Clearly, this phase-
ordering problem can affect the performance of the code generated for clustered processors. An
alternative approach is to iterate the cluster scheduling process until a feasible schedule meeting
some performance criteria is reached. The main drawback of these approaches is their large running
time.

In this report, we introduce a new code generation framework for clustered ILP processors called
CARS (Combined cluster Assignment, Register allocation and instruction Scheduling). In CARs, as
the name suggests, the cluster assignment, register allocation and instruction scheduling phases of
traditional code generation schemes are performed concurrently in a single phase, thereby avoiding
the drawbacks of the phase-ordered solutions mentioned above. In order to maximize the extraction
of instruction-level parallelism (ILP), independent OPs (that do not cause exceptions) are often
cluster scheduled out-of-order in cars. To facilitate this as well as to combine register allocation
with cluster scheduling, we developed a new on-the-fly register allocation scheme. The scheme does
not rely on any information that depends on predetermined relative ordering of OPs such as the live
ranges and interference graphs used by traditional register allocators. Our preliminary experimental
results indicate that CARS generates efficient code for a variety of benchmark programs across a
spectrum of eight different clustered ILP processor configurations.

Roadmap: In section 2 we describe the cars framework and algorithms. The details of an
implementation of CARS are given in section 3. We discuss the related work in section 4. Preliminary
results of an experimental evaluation of CARS are given in section 5, followed by some comments

and conclusions in section 6.

2 Combined Cluster Assignment, Register Allocation and Instruc-

tion Scheduling

2.1 Overview

A generic clustered ILP processor model is shown in figure-1. In this report we assume a partitioned
register file architecture with local register files containing registers with unique/private name space.
However, our scheme can be easily adapted for replicated register file architectures as well [13].
We assume that an OP can only write to its local register file and an explicit inter-cluster copy
OP is needed to access a register from a remote cluster. These copy OPs use communication
function units (a local cluster resource) and inter-cluster communication network (a shared global
resource). Either single/multiple shared buses or point-to-point network may be used for inter-

cluster communication.
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Figure 1: Generic Clustered ILP Processor Model.

Our code generation framework consists of 3 stages as shown in figure-8(b). In the first stage
some of the data structures required for the cars algorithm are set up and initialized. The real
work is done in the second stage in which the combined cluster assignment, register allocation and
instruction scheduling (henceforth referred to as carscheduling) is carried out, followed by the final
code printing stage with peephole optimizations.

The input to the code generator is a dependence flow graph (DFG) [14] with nodes representing
OPs and directed edges representing data/control low. The DEF-USE relationship between nodes
is represented using the static single assignment (SSA) form [15] with a join and fork node at the
beginning and end of basic blocks respectively. Join node DEFs represent phis (¢s) of SSA and
fork node DEFs represent anti-phis (¢~'s). Join nodes are also scheduled by cars, even though
they do not consume any resources or issue slots, for implementing on-the-fly register allocation
(explained in section 2.3).

The basic scheduling unit for cCARS can be a set of OPs created using any of the “region”
formation or basic block grouping heuristics of the various global scheduling schemes such as su-
perblock scheduling [16], hyperblock scheduling [17], treegion scheduling [18] or execution-based
scheduling [19]. These scheduling units, which we refer to as regions, are selected for scheduling
strictly in topological order. OPs within a region are scheduled in top down fashion. The output
of the code generator is a directed graph of tree-VLIWSs [20].

During code generation cARs dynamically partitions the OPs in the scheduling region into a
set of mutually exclusive aggregates (groups) — unscheduled, ready list, and v1liws %. Initially
all the nodes in the DFG belong to the unscheduled aggregate. The data ready® nodes in the
unscheduled aggregate are identified and moved into the ready 1ist. The nodes in the ready list
are selected based on a heuristic for caArscheduling. After carscheduling, the nodes are moved to

the appropriate vliws. This process is repeated until all the nodes of the DFG are scheduled.

2.2 Pre-cARS initializations

The pre-cARS initialization stage is used for preprocessing information needed by the cArs algo-
rithm. For each node we compute its height and depth in the DFG, based on the height and depth

of its dependent successor/predecessor nodes and its latency. Depth is the earliest execution cycle

2yliws is a tree of aggregates.
?A node becomes data ready when all of its dependent predecessor nodes are scheduled.
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of the OP, counting from the beginning of the DFG; height is the latest execution cycle of the OP,
counting from the end of the DFG, in an infinite resource machine. Associated with each SSA DEF
that needs to be register allocated, we maintain a RegMap structure. Inside the RegMap of a DEF,
we keep the number of uses (use_count) and the ID of the preferred register (prfrd_reg map) to
be assigned to the DEF. DEFs and USEs of certain nodes such as the ones at the entry and exit of
the procedure and call OPs must be assigned to specific registers as per the calling convention. We
mark such DEFs and USEs with a flag and initialize their prfrd_reg map to the ID of the corre-
sponding mapped register. The register allocator of CARS uses another field of RegMap, the register
mask bitvector (regmask_bv) to prevent a set of registers from being allocated to certain DEFs. For
example, we initialize regmask bv of those DEFs that are live across a call OP so that caller-save
registers will not be allocated to them. We also identify and flag loop-invariant DEFs, back-edge
DEFs and loop-join-DEF's of nodes in loops. This information will be used by cARrs, for example to
eliminate copy OPs along the back-edges of loops [13]. Physical registers are treated as a resource
in CARS. Based on the input parametric description of the machine model, we initialize the register
resource structures and their bit-vector representations, local resource counters for function units

and global resource counters for shared resources such as inter-cluster buses.

2.3 On-the-fly register allocation in CARS

Registers are allocated on-the-fly in cars without using live range information [21] or explicit
interference graphs [22]. In order to do this, it maintains and dynamically updates 1) the remaining
number of uses (ruse_count) of each physical register, 2) the availability of registers (1cl_reg bv
and glbl reg bv), and 3) preferred register mapping (prfrd_reg.map) of DEF's, as explained below.

We use ruse_count to identify and mark when a live register becomes dead. The ruse_count of
a register is decremented whenever an OP that uses it is scheduled; when ruse_count becomes zero
we mark the register as dead. Since the only information we have at any time during scheduling
is the pre-computed use_count of SSA DEFs in the current scheduling region, we initialize and
dynamically update the ruse_count as follows. As we start scheduling a new region, the DEFs
(¢s) of the join node are allocated the same register its scheduled predecessor forks’ DEFs (¢~ 1s)
are allocated. The pre-computed use_count of join DEF is then added to its allocated register’s
ruse_count. Similarly, prior to scheduling fork nodes at the exits of a region we update the
ruse_count of registers used by ¢~!'s of fork node. The number of unvisited join ¢s connected to
the fork’s ¢! is added to the ruse_count of the ¢~'’s mapped register. This prevents marking
the registers allocated to DEFs that are live beyond the current scheduling region as dead (see the
example in figure-2).

In addition to ruse_count, the availability (live or dead status) of registers are also maintained
in two bit-vectors — one representing the global status (glbl_reg bv) and the other representing
the local (i.e., within the scheduling region) status (1cl.reg_bv). All registers that are not used
in the current scheduling region are marked as dead in 1cl_reg bv, whereas the status of registers
in glbl reg bv does not depend on whether they are used in the current scheduling region or

not. We use the information in these two bit-vectors to identify non-interfering lifes in the current
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Figure 2: An example illustrating ruse_count update process in CARS. Regions are CARScheduled in
the order: A — B — C. The register r5 is not marked dead even after scheduling its last use u2.2 in B.

scheduling region for efficient use of registers as in a graph coloring based allocator [22]. Registers
that are marked dead in glbl_reg bv may be allocated to any DEF if they are not masked by
DEF’s regmask bv. Also, a register from the set of registers that are marked as dead in 1cl_reg bv
but live in glbl_reg _bv may be allocated to a DEF, if the DEF is not live beyond the current region
and the register does not belong to the set of preferred registers of all ¢~!'s at the exits of the region.

All of the above logic can be implemented by a set of logical operations on bit-vectors [13].

if(...){ Al

Y< Xtz % %02,

, T o ¢
el se{ \/

y =x -z Y, < Q0 y)
} Z< .Y
zZ=...Y;
a) Source code b) SSA representation

Figure 3: An example illustrating the problem due to different register mappings: If the SSA DEFs g,
and y, are mapped to r10 and r11 respectively, then y3 — ¢(y1, y2) becomes a non-identity assignment
and hence cannot be ignored. To fix this problem, we have to insert a copy OP r11 < r10 in block

or r10 < ri1 in block .

The ¢s of a join node require copy OPs along its incoming edges if all of its predecessor ¢~ 's
were not allocated to the same register (see the example in figure 3). To avoid these copy OPs
we use the dynamically generated prfrd reg.map information in the RegMap of DEFs as follows.
The prfrd regmap of each DEF which is live beyond the current region is initialized when the
DEF is register allocated. This prfrd reg map information is propagated to all the directly and
indirectly connected ¢s of join nodes as shown in the figure 4. (The set of directly and indirectly
connected join DEFs may be thought of as a “web” of intersecting DEF-USE chains [23] — an
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Figure 4: prfrd reg map propagation: ¢; and ¢. are the directly connected and ¢y is the indirectly
connected ¢s of ¢, .

object for register allocation in graph coloring based allocators). In general, if a DEF has an ¢!
use and there exist a valid prfrd_reg map for any of the ¢s connected to this ¢~', then we allocate
the register as specified by that prfrd reg map to the DEF. Otherwise, we allocate a register that
is dead in glbl_reg bv and propagate the prfrd_regmap to all connected ¢s as explained above.
Because the regions are scheduled strictly in topological order and registers that are live beyond the
current region are never marked dead, this scheme almost completely eliminates unnecessary copy
OPs that might otherwise be needed to handle mismatches in the register mapping of incoming
edges of ¢s.

To those DEFs that have a fixed register mapping due to our calling convention, we allocate
registers as per their prfrd reg map initialized in the pre-cars stage. Copy OPs are inserted
on-the-fly during carscheduling for those DEFs that are live across call OPs, if necessary, by
preempting the scheduling of call OP.

To avoid pseudo name dependencies we select registers for assignment in a round-robin fashion
using an efficient data structure [13]. This data structure also allows us to quickly search for dead
registers in a cluster. Inside each physical register’s resource structure, we also maintain a list of
SSA DEFs (belonging to the same live range) that are currently mapped to the register. This
information is used for spilling a live range.

Spilling: If there are no dead registers to assign to the DEF(s) of any of the OPs in the ready list,
then a live register is selected for spilling, based on a set of heuristics [13]. In order to spill the live
range mapped to a register, spill store OPs are inserted in the DFG for the scheduled DEFs (if any)
mapped to the register. These spill store OPs will be merged to one of the vliws aggregates by
the peephole compaction routine after carscheduling. The spilled register (now residing on stack)
is renamed to a unique ID outside the name space of all local register files. This facilitates easy
identification of the DEFs mapped to spilled registers and their uses in the un-scheduled regions,

so that spill load/store OPs can be inserted in the DFG and carscheduled on-the-fly.

2.4 The cars Algorithm

The cars algorithm is given in figure-5, which is a modified version of the list-scheduling algo-
rithm [24]. In order to find the best cluster to schedule an OP, we first compute the resource-

constrained schedule_cycle (lines 3-5 of figure-5) in which the OP can be scheduled in each cluster
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Algorithm 1 cars: list-scheduler version

1: while number of OPs in unscheduled # 0 do

2:  select an Op from readylist

3: fori=0to MAX_ CLUSTERS do

4 compute resource-constrained schedule_cycle[i] for Op
5: end for
6
7
8
9

earliest_cycle = min{schedule_cycle[i]}

if earliest_cycle < current vliw_cycle then
update depth of OPs and processor resource counters
allocate register(s) to DEF(s) of Op

10: assign cluster and schedule Op in the current vliws aggregate
11: insert and cluster schedule copy OP(s) (if required)

12: update readylist

13:  else

14: increment scheduling_attempts of Op

15: move Op back to readylist

16:  end if

17:  if current_vliw_cycle < min{ depth of OPs in vliws} then

18: open a new vliws aggregate and increment current_vliw_cycle
19:  end if

20: end while

Figure 5: cARs algorithm.

based on the following factors: 1) the cycle in which its operands are defined, 2) the cluster in
which its operands are located, 3) the availability of function unit in the current cycle, 4) the avail-
ability of destination register, and 5) whether inter-cluster copy OP(s) can be scheduled or not on
the source node’s cluster in a cycle earlier than the current cycle. Based on the earliest cycle
computed (line 6), the OP will be either scheduled in the current cycle on one of the clusters* cor-
responding to earliest_cycle (lines 7-10) or pushed back into the readylist after incrementing
its scheduling_attempts (lines 13-16). A new vliws aggregate will be created if none of the OPs in
the ready 1ist can be scheduled in the current_vliw_cycle (lines 17-19). This process is repeated
until all OPs in the unscheduled aggregate are cluster-scheduled.

We use one of the commonly used heuristics — schedule those data ready OPs that are on the
critical path first — for selecting an OP from the ready list (line 2 of figure-5). The sum of the
OP’s height and depth is used to identify OPs that are likely to be in the critical path(s) and to
assign priority to the data ready OPs. The scheduling_attempts variable associated with each OP
(updated in line 14) is used to change the OP selection heuristics so that no OP in the ready list
will be repeatedly considered in succession for carscheduling. This also ensures termination of the
algorithm. The depth of a scheduled OP is often increased after scheduling due to finite resources
available in each cycle, causing the set of OPs in the critical path(s) to change dynamically during
the cluster-scheduling process. Therefore, in order to greedily select OPs in the critical paths first,
after scheduling each OP, we update the depth of the OP and the depth of all of its dependent nodes
that became data ready as a result of scheduling the OP (lines 8 and 12 of figure-5). Coupled with

the prioritized selection of nodes in the critical path, this fully resource-aware cluster scheduling

*If the OP can be scheduled on more than one cluster in the earliest cycle, then a cluster is selected for

assignment based on a set of heurisitcs [13].
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Figure 6: An example illustrating how ruse_count is updated during on-the-fly register allocation of
a live range which is live at the exit of the loop. Register r5 is allocated to DEF d1. Regions are
cARrscheduled in the order: A— B — C—D.

approach lets CARs assign and schedule OPs in the critical paths in appropriate clusters such a
way that the stretching of critical paths is minimal and subject to the finite resource constraints of
target machine.

Often inter-cluster copy OPs have to be inserted in the DFG and retroactively scheduled in
order to access operands residing in remote clusters (line 11 of figure-5). We use an operation-
driven version of the cars algorithm for this purpose. In order to find the best VLIW to schedule
the copy OP, the algorithm searches all the viiws aggregates starting from the DEF cycle of the
operand (or from the cycle in which the join node of the current region is scheduled, if operand
is not defined in the current region) to the current cycle. We use the tree VLIW instruction [20]
representation so that independent OPs from multiple regions can be scheduled in the same vliws
aggregate. Due to lack of space, we will not further describe the details of operation-driven CARS

algorithm and tree-VLIW scheduling, which may be found elsewhere [13].

2.5 cARscheduling cyclic regions

Loops are cArscheduled similar to acyclic DFG. A loop-head join node becomes data ready when
all of its predecessor fork nodes, except the back-edge fork node(s), are scheduled. The ruse_count
update process is exactly similar to cARscheduling acyclic regions as illustrated in figure 6. However,
some additional techniques are required to avoid unecessary insertion of copy OPs along the back-
edges of loops due to mismatches in register mappings. In the following, we first describe the
problem using an example and then present our solution which uses the information obtained from

pre-CARS initialization pass.



A i —a
goto B
B: iy — ¢a(in,1a)

if (iz > b) goto D
for(i = a; i < b; i++){

} 13—y +1
goto C

CZ i4 — (]53(23)

a) Source code of loop. goto B

D: i5 — ¢4(22)

b) Loop in SSA form.

r5’* @

Figure 7: An example illustrating prfrd_reg map propagation during on-the-fly register allocation of a
loop. Regions are carscheduled in the order: A — B — C — D. Register r5 is allocated to DEF d1. If
a different register r5’ is allocated to DEF d2, then a copy OP r5 — r5 must be inserted along the
back-edge ¢3 qbgl.

Let us consider the live ranges associated with the loop index computation shown in figure 7.
We call the DEF which is connected to the loop-head join via back-edge of the loop, such as the
DEF d2 of the OP which updates the loop index, as a back-edge DEF. The back-edge DEF 42
does not have any preferred register assigned at the time of carscheduling its OP, because the
successor join DEFs (¢35 and ¢4) of d2’s fork use gﬁ;l do not have their prfrd _reg maps initialized
yet. Consequently, the register allocator may choose a register r5’, which is different from the one
(r5) mapped to ¢, for allocation to d2. This necessitates a copy OP such as r5’ — r5 to be inserted
along the back-edge of the loop to take care of the mismatch between register maps of ¢3 and ¢,.
CARS eliminates such copy OPs as follows. During the pre-CARS pass, for all back-edge DEF's that
are not loop-invarient (such as d2), we identify the loop-head join DEF that can be reached via
the back-edge of the loop (¢ in our example), and save this information in the back-edge DEI’s
RegMap structure. Whenever such a back-edge DEF is encountered during cArscheduling, we try
to allocate it the register assigned to its associated loop-head join DEF. In the above example,
hence we allocate r5 to d2, since the join DEF associated with d2 is ¢9, thereby eliminating the
copy OP r5 — r5. If there are no OPs in the back-edge block after scheduling the loop body, the

scheme also help eliminate an extra branch by deleting the empty back-edge block.

3 Implementation

We have implemented a code generator based on CARS on top of CHAMELEON [25, 26] VLIW research

testbed. The input to CHAMELEON is object code (.o files) produced by a modified version of gece
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compiler. An object-code translator processes these .o files to generate an assembly-like sequential
representation. The modified version of the VLIW compiler with the cArs-based backend takes

this sequential code as input and outputs VLIW code (tree-instructions) as shown in Figure-8(a).

a) CHAMELEON VLIW research testbed:

o Object Instrumented
Modified > code > VLIW Compiler »| VLIW » VLIW files » Executable
gce translator translator (PowerPC binary
s files)
.o files .vinp files .vasm files

b) VLIW compilation stages:

Initial phase: Architectural ILP enhancing .
dependence graph, Optimizations: optimizations: Dynamic

loop clean up, | Conditional instrs., —»| unrolling, cloning, —>| = Mmemory
static memory 3-input instrs., MII reduction, disambiguation
disambiguation etc. etc. (not used)

Modified Peephole

i optimizations, |€— CARS |=— . pr_e-_CARS B —

VLIW compiler - initializations

backend Code printing

Figure 8: Implementation of CARS on the CHAMELEON VLIW research testbed.

The VLIW compiler first builds the DFG and then performs a series of optimizations as shown
in figure-8(b). Compilation is performed at procedure level and without function in-lining. The
prologue and epilogue code are added to the DFG after carscheduling the procedure. These
pro/epilogue OPs are then cluster scheduled using cAars. The vliws aggregates are then passed
through a peephole optimizer and to the final code printing stage. The output of CARS, the tree-
VLIWs, are then instrumented and translated into PowerP C assembly code that emulate the target
Clustered ILP processor.

A parametric description of the target clustered machine model can be specified to the code
generator. The number, type and latency of function units in each cluster, any kind of arbitrary
mapping of register name space to local register files, number, type and latency of global intercon-
nect are some of the configurable parameters that are currently supported by our code generator.
A subset of the machine resource information is maintained on a per-VLIW basis during code
generation.

As of writing this report spilling is not fully implemented. Currently, akin to the Bulldog com-
piler [27], our compiler exits if an OP cannot be scheduled even after making a constant number of
repeated scheduling attempts. However, by controlling the extent of loop-unrolling, we are able to
compile 95-100% of all functions in the benchmark programs that we have used in the experimental
evaluation of CARs (section 5). Moreover, in single cluster configuration, cCars could compile more
number of functions without spilling compared to the unmodified version of CHAMELEON compiler

(which performs register allocation after scheduling for single cluster machines). This clearly shows
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the ability of cars to pick different OPs from the readylist until a register is available to sched-
ule an OP. While compiling for clustered machines, the CARS algorithm automatically migrates

computation to a cluster with lower register pressure.

4 Related work

To the best of our knowledge caRrs is the first code generation scheme that combines the clus-
ter assignment, instruction scheduling and register allocation phases for a partitioned register file
clustered ILP processor.

Solutions for phase-ordering problem: Several schemes have been proposed to combine dif-
ferent phases of code generation for clustered as well as non-clustered processors. The most recent
one, the UAS algorithm [28, 29] for clustered VLIW processors by Ozer, Banerjia and Conte per-
forms cluster assignment and scheduling of instructions in a single step, using a variation of list
scheduling. The UAS algorithm, however, does not consider registers as a resource during cluster
scheduling. In contrast, the cars algorithm treats registers as one of the resources and performs
on-the-fly register allocation along with cluster scheduling in a resource-constrained manner.

A variety of techniques have been proposed for combining register allocation and code schedul-
ing of single cluster processors. Goodman and Hsu proposed an integrated scheduling technique
in which register pressure is monitored to switch between two scheduling schemes [30]. Operation-
driven version of the CARS algorithm is motivated by this work. However, unlike their scheme, we
switch to operation-driven scheduling only for scheduling inter-cluster copy OPs. Bradlee et al [31]
proposed a variation of the Goodman-Hsu scheme and another technique. Pinter [32] proposed a
technique that incorporates scheduling constraints into the interference graph used by graph col-
oring based allocators. Berson et al [33] proposed a technique based on measuring the resource
requirement first and then using that information for integrating register allocation in local as well
as global schedulers. Brasier et al proposed a scheme called CRAIG [34] that makes uses of infor-
mation obtained from a pre-pass scheduler for combining scheduling and register allocation phases.
The compiler for TriMedia processor uses a technique much like the scheme in [33] to combine
register allocation and scheduling [35]. Hanono and Devadas [36], and Novak et al [37] proposed
code generation schemes for embedded processors, which combine the code selection, register allo-
cation, and instruction scheduling phases. Farly examples of techniques that did scheduling and
register allocation concurrently for single cluster VLIW machines include the resource-constrained
scheduling scheme by Moon and Ebcioglu [38]. The fundamental difference between our scheme
and all the above are: 1) the use of register mapping information and separate local and global
register status during carscheduling, and 2) combining all the three phases involved instead of
two. The vLaTTe compiler handles fast scheduling and register allocation together in the context
of a JAVA JIT compiler for a single cluster VLIW machine [39].

Register allocation: Local register allocation via usage counts [40] is a well known technique.
More recently, a number of fast global register allocation schemes have been proposed. For example,

the Linear Scan register allocation scheme [21] by Poletto and Sarkar use live interval information
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to allocate registers in a single pass. All these schemes and the graph coloring based allocators [22]
need the information about the precise ordering of OPs for computing interfering live ranges which
is only available after scheduling. The on-the-fly register allocation scheme used in CARS is not
based on any such information that is available only after scheduling the entire DFG.

The preferred register map approach in CARS is similar to the scheme proposed by Yang, Moon

et al [41] for the LaTTe just-in-time compiler. However, LaTTe makes two passes (a “backward
sweep” collects information on preferred registers for OPs and a “forward sweep” performs register
assignment) for local register allocation of ¢ree regions and it needs copy OPs due the mapping
mismatches (as illustrated in Figure 3). In contrast, cars performs global register allocation in
a single carscheduling pass using pre-computed use_count of DEFs. Moreover, CARS by design
tries to prevent the mapping mismatches.
Cluster Scheduling: Pioneering work in code generation for clustered VLIW processors is done
by Ellis [27]. The Multiflow compiler [42] performs cluster assignment using a modified version of
the Bottom-Up Greedy (BUG) algorithm proposed by Ellis in a number of steps and then performs
register allocation and instruction scheduling in a combined manner. Desoli’s Partial Component
Clustering (PCC) algorithm [43] for clustered VLIW DSP processors is an iterative algorithm that
treats the clustering problem as a combinatorial optimization problem. In the initial phases of the
PCC algorithm, “partial components” of DAG are grown and then these partial components are
assigned to clusters much like the cluster scheduling scheme using components, equivalent classes
and virtual clusters [11] of the Multiflow compiler. In the subsequent phases, the initial cluster
assignments are further improved iteratively. In contrast, the cluster assignment approach of our
scheme is fundamentally different from the recursive propagation of preferred list of functional
units and cluster assignment as in the BUG algorithm. Cluster assignment, register allocation, and
instruction scheduling are performed concurrently in a resource-aware manner in CARS.

Another work is the cluster scheduling for the Limited Connectivity VLIW (LC-VLIW) archi-
tecture [44]. Cluster scheduling for the LC-VLIW architecture is performed in three phases. In
the first phase, the DAG is built from the compiled VLIW code for an ideal single cluster VLIW
processor. The second phase uses a min-cut graph partitioning algorithm for code partitioning. In
the third phase, the partitioned code is recompacted after inserting copy operations.

The dynamic binary translation scheme used in DAISY performs “Alpha [6] style” cluster
scheduling (without using inter-cluster copy OPs) along with register allocation for a duplicated
register file architecture [19, 3].

Multiprocessor Scheduling: A large number of DAG clustering algorithms have been proposed
for multiprocessor task scheduling in the past [45]. Sarkar’s partitioning algorithm [46] and the
more recent ones such as Dominant Sequence Clustering (DSC) [47] and CASS-II [48] are examples
of such algorithms. The input to these algorithms is a DAG of tasks with known edge weights
corresponding to the inter-node communication delays. Clustering is carried out in multiple steps.
In the first step, these algorithms assume an infinite resource machine and each node is assumed
to be in a different cluster. A sequence of refinement steps are performed in the second step, in

which two clusters are merged by “zeroing” the edge weight (communication delay between nodes)
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based on different heuristics. The clusters produced in the previous steps are merged together in
the third step so that the resulting number of clusters does not exceed the number of processors
in the multiprocessor. The compiler for the MIT RAW project, RAWCC [49], employs a greedy
technique based on the DSC algorithm for performing cluster scheduling in multiple phases. In
contrast, the CARS algorithm performs cluster scheduling with register allocation in a single pass,
always assuming a finite resource machine. We use the same heuristics used by DSC, CASS-II and
BUG algorithms to select data ready nodes in the critical path for cluster scheduling.
Eichenberger and Nystrom proposed an iterative modulo scheduling scheme for clustered pro-
cessors [10]. Fernandes et al proposed a distributed modulo scheduling scheme for clustered VLIW

machines that uses register queues for inter-cluster communication [50].

5 Experimental Results

[[SPEC CINT95 | MediaBench | SPEC CINT2000 |

= Function unit Latency
099.go rawcaudio 181.mcf -
. . Fix 1
124.m88ksim rawdaudio 197 .parser
126.gcc 721.encode FP 2
& g FP divide 9
129.compress | g721.decode
. . FP sqrt 9
130.1i epic
132.ijpe unepic Load !
Peg P Branch 1
134.perl .
Communication 1
147 .vortex

Table 1: Benchmark programs Table 2: Latencies of function units.

We used a set of programs?® listed in Table-1 from the SPEC95 [51], MediaBench [52] and SPEC2000 [53]
benchmark suites for performance evaluation. The compiled simulation binaries are run to comple-
tion with the input data sets of corresponding benchmark programs. These instrumented binaries
upon execution provide the number of times each tree VLIW instruction and each path in it are
executed. For comparing the code generated for different clustered machine configurations we used
the total number of VLIWs executed as a metric, which corresponds to the infinite cache execution
time in cycles.

We used two base configurations — both are single cluster machines with 8 and 16 function
units with latencies as listed in Table-2. Small changes in function unit latencies do not have
much effect on the relative performance of code generated for single cluster vs. multi-cluster
machines using CARS. The register file size of both base configurations are identical: 64 INT, 64
FP and 16 condition bit registers. The 8 and 16 ALU machines can issue 8 and 16 OPs per cycle
respectively, of which at most 3 can be branch OPs on both configurations. The clustered machines
are configured such that the issue width and resources of the base machine are evenly divided and

assigned to each cluster. We compared the number of cycles taken to execute the code generated

5The functions that cannot be compiled due to high register pressure in these programs are compiled separately
and treated as system calls for the compiled binary simulation. The same set of functions are excluded for all the
machine configurations studied even though a subset of them could be compiled without spilling due to the variations

in register pressure of different machine configurations.
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rations over single cluster.

for 2-cluster and 4-cluster machines. Figures 9, 11, 10 and 12 show the speedup (ratio of number
of VLIWs executed) with respect to the corresponding base configurations of clustered machines

with single and two inter-cluster communication buses. Speedup higher than one was observed
This is primarily due to the aggressive peephole

on clustered machines for some benchmarks.
optimizations done after carscheduling and also due to the non-linearity of the cluster-scheduling

process. Similar observations were reported for the code generated using PCC algorithm [43]. On

average the additional number of cycles due to clustering compared to single cluster machines is

less than 9.6% and 9.2% for 2-cluster machines with 16 and 8 AL Us, whereas the corresponding

figures for 4-cluster machines are 13.9% and 13.9%. This clearly shows the efficiency and scalability
of the CARS-based code generation scheme. The cARrs algorithm tries to distribute computation
across clusters, fully utilizing the available inter-cluster communication bandwidth. This is evident

from the observed 10.1% increase in average performance while going from single bus to 2 bus

configurations.
Figure 13 shows the distribution of the number of inter-cluster copy OPs and other executed
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Figure 14: Average bus utilization for clustered 8-ALU machines.

OPs for clustered 8-ALU machine configurations. We can see that the average number of executed
inter-cluster copy OPs varies from 11% to 16% of the total number of executed OPs. Figure 14
shows the average bus utilization for different configurations of clustered 8-ALU machines studied.
The observed high utilization of inter-cluster communication bus for the configurations that have
either less number of buses or more number of clusters is a clear indication of the adaptive nature
of cars-based code generation framework and its ability to distribute OPs across clusters in a
resource-constrained manner.

We believe that CARS can generate more efficient code than other schemes because of its capa-
bility to use heuristics based on local register pressure feedback for better cluster assignment and

scheduling, as well as its ability to reduce spilling caused by phase-ordering problem.
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6 Conclusion

We have presented CARS, a new code generation framework for clustered ILP processors. Our
work is motivated by the phase-ordering problems of code generators for clustered ILP processors.
Our scheme completely avoids the phase-ordering problem by integrating the cluster assignment,
instruction scheduling and register allocation into a single phase, which in turn helps eliminate
unnecessary spills and other inefficiencies due to multiple phases in code generation. The fully
resource-aware cluster scheduling scheme of CARS not only helps avoid unnecessary stretching of
critical paths in the code but also distribute computation evenly across the clusters whenever
possible. We also described an efficient on-the-fly register allocation technique developed for caRs.
Even though the register allocation scheme is described in the context of code generation for
clustered ILP processors, the technique is well suited for other applications such as “just-in-time
compilation” and dynamic binaray translation for efficiently generating high performance code. Our
experimental results show that cars-based code generation scheme is scalable across a wide range
of clustered ILP processor configurations and generates efficient code for a variety of benchmark
programs.

Incorporating software pipelining into CARS and making an iterative version of CARS for gener-
ating highly optimized code for small DSP kernels are some of the directions we plan to explore in

the future.
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